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Summakry

A three-parameter generalization of the beta-binomial distribution (BBD) is

derived and examined. We obtain the maximum likelihood estimates of the param-

eters and show that the regularity conditions for asymptotic efficiency are satisfied.

To exhibit the applicablity of the generalised distribution we show how it ives an

improved fit over the BBD for magazine exposure and consumer purchasing data.

Finally we derive an empirical Bayes intimate of a binomial proportion based on

the generalised beta distribution used In thi study.
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1. Introduction

Suppose an advertiser is about to launch an advertising campaign by placing

one advertisement in k successive issues of a magazine. His objective is to estimate

the proportion of the population which ames none, one, or up to all k of the advertise-

ments. We say that an individual reading a magazine is ezposed to an advertisement

when he or she sea the ad. Let X be the number of exposures and P the probability

an individual is exposed to any one ad. The distribution of X is called the espo-

eure distribution (e.d.). It is reasonable to assume that XJP - bin(k,p) if, given

P = p, readership of successive issues is independent (Ehrenberg 1975 discusses

this assumption in some detail). Now let P be a random variable having a beta

distribution. The beta distribution is particularly attractive since it can assume so

many shapes. By compounding the binomial with the beta distribution we obtain

the BBD. It is also known as the negative hypergeometric distribution (Johnson

and Kots 1969). The mass function of the BBD is

B X (k r(a+q) r(k-z+P) r(z+a)
f (x = ) = +P +k) r(P) r '(a)

z=0,1,...,k, a>0, j>0,

where r( + 1) = t(), the usual gamma function.

The BBD was first derived by Skellam (1948). Multivariate generalizations of

the BBD were studied by Ishii and Hayakawa (1960). The BBD has been success-

fully applied to estimating the e.d. of media schedules with one magazine (Mether-

ingham 1964; Chandon 1976), television schedules (Rust and Klompmaker 1981),

consumer purchasing behaviour (Morrison 1979) and as an indicator of television

loyalty (Sabavala and Morrison 1977). In addition the BBD has been used to es-

timate the distribution of household disease (Griffiths 1973) and proportions with

extraneous variance (Kleinman 1973; Moore 1987).

Many people subscribe to one or more magazines. Among them is a proportion
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which always reads a particular magazine. Chandon (1976) suggests a modification

of the BBD which he calls the "two segment beta-binomial model'. One segment

is definite readers and the other is probable readers. In Section 2 we will derive a

generalisation of the BBD based on the two segment model introduced by Chandon

and develop it further. In Section 3 we will look at maximum likelihood estimation

of the parameters of this new distribution then prove that regularity conditions for

these estimates to be asymptotically efficient are satisfied. In Section 4 we will give

some examples where the new distribution gives an improved fit over the BBD for

magazine exposure data and consumer purchasing behaviour. Finally, in Section 5

we will use the generalised BBD to obtain an empirical Bayes estimate of a binomial

proportion. This estimate will be applied to simulation of magasine e.dJ

2. Generalization of the BBD

Let w and 1 - w represent the proportion of definite and probable readers,

respectively. The parameter w may be viewed as a loyalty factor since a high value

of w indicates an appreciable reading loyalty whilst a low value indicates little or

no loyalty to a particular magazine.

To incorporate this reading loyalty proportion we change the distribution of P

from a beta distribution to a beta distribution mixed with a distribution degenerate

at p = 1. The cumulative distribution function of P is now

Fp(p) = (1- -., + ) '(- o)o-'dyI +r(a)r(P)y Il (2.1)

0<p<l, a>0, 0>0, 05_W:5l.

When Fp(p) is compounded with the bin(k,p) distribution we obtain the

modified BBD (MBBD) with mass function

flO(X z)=(l_ W) (k) r(a+# !  r(k-z+#)r(z+a)zr(a +#+k ) F-(Pj ) + '(a j

x = 0,..., k. (2.2)
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When w=O the MBBD reduces to the BBD.

We derive the factorial moments of the MBBD using knowledge of the factorial

moments of the BBD and linearity of the expectation operator. They are,

(1-W kt r(a + ) A(-*+p0) + kt)k 0 r(a) r(a + + I)! ' =1,2 ....

In particular,

E(X) = k (2.3)

and

v kc(X) =( -w)[k a (a + 0 + k) + k2 w(a + P+ 1)]
(a + P)2(- + + 1)

3. Parameter Fetimation

Chandon (1976) estimates a, 0 and w by equating the sample proportion of

nonreaders to the proportion of mreaders given by the MBBD model for k =

1,2,3. In Section 4 it will be seen that we do not have these data at our disposal.

Furthermore, Chandon's method does not produce estimates having any optimality

properties such as being BAN and, in addition, suffers from inconsistencies which

sometimes force him to set w = 0, thereby losing any advantage of using the MBBD.

We will estimate a, 0 and w using maximum likelihood.

Let ni be the number of people in the sample (of size -n 1n-) which see i

out of k issues of a magasine, i = 0, 1,..., k. We will see in Section 4 how these

data are obtained from a media sample survey.

Define c = e(a,P) = [r(a + k)r(a + P)J / [r(a)r(a + P + k)J.
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Then the liktelihood equations awe

F- = FA 1(a, ijn 4 - (a - ni&)AI(@ + 0, k)

+(1 - w)c[Al(a, k) - Al(a +, k)J,

(1-w~ciW + P )&

0 log L _-a-k

A.,W + W+ -)c

where A1 ('y,1) = E'-' &)+

By equating a log Llaw to zero we got

Substitution of 0 into the knt order partial derivatives results in the folowing

second order partial derivatives

a2 log L (a - nk)c [(A (a,.k-AI( +' 0,k))11(1 - c) + A2 (a + ,0, k)
TOT - (I-) -C)

6-1

-A 2 (a,k)J - , A2(a,iSaN + (a - a&)A2(a + P,k),

Ba2lgLj -(1-c [(A (a + k) - A (a, k))AI(a + , k)/(1 - c)

+ A2(a + 0, k)I + (a-Ak2(a + 0, k),
a 2 log L =n - nak)c[A + Pk)(i-c) + A2(c + ,5,k)J

- 2 i, n - sIna + (a - npk)42(a + k)

im0

where A2(yI,L)=



The MBBD likelihood equations have no closed-form solution but may be solved

by the Newton-Raphson method using the above partial derivatives. Since 0 is an

explicit function of & and 0 the numerical work is considerably reduced.

In Section 4 we will define some criteria by which the effectiveness of an adver-

tising campaign is judged. These criteria are functions of 9 = (a, fl, w). To obtain

asymptotic variances for the criteria estimates we first need the asymptotic joint

distribution of 9= (&, , ).

Consistency and asymptotic efficiency of the MLEs can be established using

the multiparameter discrete distribution version of theorems utilized in Giesbrecht

and Kempthorne (1976) and proved in Kulldorff (1957). The statement of Kull-

dorff's theorem has been tailored somewhat to suit the three-parameter, discrete

distribution case.

Theorm (Kuldorff 1957). Let fi = f(X = i). The parameter space of OFis denoted

fl and is an open ball. If the following regularity conditions are satisfied:

i) OwLt, 2ft $ L and exist for every , i = 0,...k, j=1, 2, 3;

iii) The information matrix 1(81 is positive definite;

iv) There exist numbers {Hi} (independent of the parameters except possibly the

true parameter values) and a positive, twice differentiable function g(01 such that

for all parameter values Ef nwhere 00'fHi < o;

then 0 is unique and V n(I- 0 - MrVN(O- [I(,I] -') as n -+ co.

For the MBBD let 90 = (a,Pw), n = (o, oo) x (0, co) x (0,1) and fi = f.In.

We will now show that the above conditions are satisfied.

i) As .rB is a ratio of polynomials in Oy it is clear that all third order partial

derivatives of log fAI exist on fn.

6
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ii) We have f!I = 1 so these two conditions are satisfied if we can inter-

change the order of differentiation (w.r.t. i) and summation. As the sum is over

only a finite number of terms and the second order derivative, exist (by (i)) this

interchange is valid.

iii) The 3 x 3 information matrix I(Ol has elements

I~~~) (1 w ~[i~ai) &,A(a + ,5,k)Jf
imO

c2(1 - W)2 f 1,&(alk) - AI(a + fl,k)J2

+(1W)C + W

I,~) =( - w) [A 1 ( i, -- i(a + j6,k)Jf

imO

+C2(1 - W)21&,(a + 00 k)J

+3 ((-w c w

[( W)c + WI( - W)
4-1

112(01 =(1 -w) ~2A~~)- Al(a + ,k)I[A(,k- -j A~ 0 ~f

C2 (1 - W)2 [Ai(a,k) - AI(a + fi,k)JAI(a + fl,k)

12301 cA(a +P, k)
(1-W)C+W,

The proof that 1(81 is positive definite when k > 3 is somewhat messy. The full

details are given by Dahaher (1987). The information matrix in singular when k < 2

as this corresponds to the situation where we have more parameters to estimate than

we have data.

iv) The only problem ponts are when a+ PInsnear 0or when winsnear 1. One

possible g which fulfills this requirement is #(I = (I -wc1i+/) This function

is suitable since jg(8j), *U(81, -...,g(0) and all requisite derivatives tend to zero as

a, P, and a + P tend to 0. In addition g(O) eliminates any problems when w =1
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It follows from Kulldorif (1957) that the MLEs are best asymptotically normal

with covariance matrix -1(01.

Kulldorff's (1957) results can also be applied to the BBD to show the MLEs

of a and # are consistent and asymptotically normal, something Kleinman (1973)

stated he was unable to do. Minor modifications to the above method are necessary;

for example, let w = 0 in g()-.

4. Applications

The survey data we will use here comes from the AGB: McNair Surveys New

Zealand Ltd. "National Media Survey" of 5201 residents of New Zealand conducted

in 1985. In the survey two of the questions asked of the respondents were (for weekly

magazines);

Q1) "Have you personally read or looked into any issue of ...(magazine name)

in the last seven days - it doesn't matter where?" (Has a Y/N answer).

Q2) "How many different issues of ...(magazine name), if any, do you personally

read or look into in an average month - it doesn't matter where?* (Has answer

0,1,2,3,4 issues).

The wording of Q1 and Q2 are modified appropriately for fortnightly, monthly

and two-monthly magazines. These questions were asked for forty different maga-

zines.

An implicit assumption in the magazine advertising field is that a person who

reads a magazine is exposed to all the advertisements in that magazine. This is

unlikely to be true for people who meet the criterion of "read" in Q1 and Q2.

However, it is usually impractical to ask respondents which advertisements they

have been exposed to so we cannot avoid making this assumption for the available

data.

The parameter estimates for the National Business Review are given in Table 1.

8



The estimate of w tells us that 1.7% of the respondents always read this magazine.

From QI we can estimate that in any particular week 2.6% of the population will

read the National Business Review. This implies that of the 2.6% who read this

magazine in any particular week 1.7/2.6 = 65.4% read it every week. This gives

the National Business Review a high readership loyalty, something well known by

its publishers.

Let ei be the estimated number of people who have i exposures. The ci's in

Table 1 come from substituting the estimated parameters of Table 1 into (2.2).

Then the Pearson X2 goodness of fit statistic is defined to be X2 = =n -C,)21e, C,(a)toX
oe- c (say). We can interpret Cj as the contribution to x2 from the

Oh exposure. In this case the X2 goodness of fit statistic for the BBD is significant

(p-value< 0.001) but for the MBBD it is not significant (p-value> 0.1). The ci's for

the two distributions (values are in parentheses next to expected frequencies) show

that a considerable improvement in accuracy has been made, particularly for three

exposures.

Table 1 also gives the likelihood ratio test for HO : w = 0 vs. H, : w > 0. It

shows that w is significantly nonzero (there is 1 df for this test).

The important goodness of fit criterion to an advertising agency is not the X2

statistic (Naples 1979). They measure the closeness of the fit by three other criteria.

The first is reach, which is defined as the proportion of the population which

is exposed to at least one of the advertisements, i.e., 1 - fI (X = 0). The second

criterion is effective reach, the mean of the e.d. The third criterion is single issue

reach, the proportion of the population exposed to any one issue of a magazine.

It can be seen in Table 1 that for the three criteria above the MBBD prc-duces

estimates closer to the observed values than the BBD.

9



Table 1: Readership data for the National Business Review showing
the fits for the BBD and the MBBD. Sample size = 5201.

Number of Observed Exp~ected Freouency
Exposures Frequency BBD (c,) MBBD (c,)

0 4961 4961.3 (0.00) 4960.9 (0.00)
1 90 67.9 (7.19) 95.5 (0.32)
2 43 43.4 (0.00) 35.3 (1.68)
3 12 42.5 (12.89) 15.3 (0.71)
4 95 85.8 (0.99) 95.0 (0.00)

Parameter &=0.012 &=0.024
Estimates j6=0.372 P=2.113

D=0.017

X2 Goodness of Fit 30.0 2.7
d.o.f. 2 1

Likelihood Ratio 18.8
Test Statistic

Reach % 4.614 4.609 4.616

Effective Reach 0.114 0.120 0.114

Single Issue Reach % 2.59 3.01 2.84

10



Of course, it is expected that the addition of a parameter will make the model

more flexible and hence improve the fit. Notice, however, that the shape of the

distribution of P for the MBBD is different from that of the BBD, as shown in Figure

1. The essence of pMB is a reverse 3-shape distribution with a jump at p = 1. This,

empirically and intuitively, is a better distribution to allow for magazine reading

loyalty. On the other hand PM assumes a U-shape which puts too much weight on

the probability of three exposures, a property not consistent with the data.

Assuming our MBBD model is correct we can use (2.1) and (2.3) to write down

expressions for reach (p):

P= 1IME(X=0 = (-) r(a +~ r(P3+ k)

and effective reach (p.):

Since both p and p. are differentiable functions of (ar, .8, w) we can obtain

asymptotic variances for ~3and A. using the delta method and the information

matrix 1(81 given in Section 3. The asymptotic 95% confidence interval for p for

the data in Table 1 is [4.03, 5.201% and the 95% asymptotic confidence interval for

P, is [0.098, 0.1301.

Just because the MBBD fit is better for one magazine it does not mean that

it is always better than the BBD. We compared the fit for all forty magazines in

the survey which covered the entire spectrum of entertainment magazines through

to computer magazines. The average absolute error between estimated reach and

sample reach for the forty magazines is 0.030% for the BBD and 0.036% for the

MBBD. The average absolute error between estimated effective reach and sample

effective reach is 1.36% for the BBD and 0.28% for the MBBD. The average absolute

error between estimated single issue reach and sample single issue reach is 0.44% for

the BBD and 0.36% for the MBBD. Summing up, the MBBD error is marginally

11t
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Figure 1: Shapes of the distribution of P for

the Eft (PB) and the MB3BD (PUB) models.
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worse than the BBD error when estimating reach but the MBBD is clearly better

at estimating the effective reach and single issue reach. Overall it is fair to say that

the MBBD gives an improved fit over the BBD for magazine e.d. data.

The MBBD can also be utilized as a marginal distribution when estimating the

reach and effective reach of advertising schedules in higher dimensions (Danaher

1987). In addition the MBBD has applications not only for magazine readership

but also to television viewership and to newspapers, whose readership exhibits a

high level loyalty.

The MBBD need not be restricted to fitting media exposure data. If we have a

proportion of the population which alway8 behaves in a specified way whilst the rest

of the population has a certain probability of behaving in the specified way then the

MBBD should be considered as a possible model instead of (say) the BBD. Such a

situation arises in consumer purchasing bevaviour, as the following example shows.

Morrison (1979) uses some purchase intention data of Juster (1966) in which

Juster asks respondents to rate their purchase intentions for autos and appliances

on a scale from 0 to 1 in 0.1 gradations. Zero is for no intention and 1 is for an

almost certain purchase (see Morrison (1979) for details). A follow-up study was

conducted in which Juster asked the respondents if they actually bought an auto or

appliance. Morrison constructs a model to predict actual purchase behaviour from

stated purchase intention in which he uses the BBD to fit the intention data.

The data have the following characteristics: a large group have no purchase

intention, some people have a probable purchase intention and some people are

certain to purchase in the future. Owing to the nature of people's intentions as

revealed by Juster's data the MBBD is a good distribution to use to fit the data

instead of the BBD.

In Table 2 we see that both the BBD and MBBD give an excellent fit to the

13



Table 2: Purchase intention data for appliances to be
bought in the next 12 months. Sample size = 2688.

Intention Observed x ted hgauency
Scale Frequency BBD MBBD

0.0 2377 2373.5 2377.0
0.1 87 85.4 90.7
0.2 57 45.8 47.7
0.3 29 32.3 32.9
0.4 23 25.6 25.5
0.5 22 21.8 21.0
0.6 21 19.5 18.1
0.7 14 18.3 16.1
0.8 11 17.9 14.8
0.9 17 19.0 14.1
1.0 30 24.9 30.0

Parameter &=0.035 &=0.038
Estimates --0.687 0=O.873

0 =0.008

X2 Goodness of Fit 8.43 5.02
d.o.f. 8 7

Likelihood Ratio 3.5
Test Statistic
p-value 0.065
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data an neither of their X2 goodness-of-fit statistics is significant. The X2 for the

MBBD is smaller than that of the BBD, for which the likelihood ratio teat (with

8 - 7 = 1 df.) gives a marginally significant p-value of 0.065. Hence, the MBBD

gives a better fit than the BBD for these data. A parallel study to Morrison's could,

therefore, be done using his method but replacing the BBD with the MBBD.

5. Empirical Bayes Estimate of Single Issue Reach

We can think of F;V(p) of (2.1) as the prior distribution of an individual's

exposure to a single issue of a magazine. The posterior distribution of PJX = z is
. x,)U (). Under squared error loss the Bayes estimate of p is the mean of

the posterior distribution (Berger 1980). If we estimate the parameters a, 0, and w

from the data we get the empirical Bayes estimate (Casella 1985). The empirical

Bayes estimate of single issue reach under the distribution of P in (2.1) is

(& + +k)'
Pu(+{+,(1 -(Z))(, ) +&Z+k ' k.(5.1)

(I ,a~)+ , k.

This estimator makes a great deal of sense since if x = 0 in the survey the MLE is

PMLB(0) = 0, which implies that a person will never read the magazine, whereas a

person may buy the magazine on impulse or glance at it in a doctor's surgery, for

example. On the other hand, if z = 4 in the survey for a weekly magazine, the MLE

implies a person always reads the magazine which is unlikely to be true since various

reasons may prevent a person from reading a particular issue of a magazine. That

is, this estimator tends to moderate, from the extreme, an individual's exposure

probability.

We calculated the empirical Bayes estimates of single issue reach for the Na-
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tional Businw Review thus:

0.163(z +0.024), = 0,...,3
PMB) = (5.2)

0.9799, z = 4.

Such an estimator in useful in simulation studies, for instance, if it were required

to estimate the audience for a schedule which combined different media types and no

exposure model were available. Suppose, for example, a schedule has 4 insertions in

particular magazine and three insertions in a particular television time slot. Extract

the response to Q2 (call it z..) for the magazine, then calculate PUB (z,x.). Now

simulate 4 Bernoulli trials with probability of success PU (z,,.). Keeping with

the same individual extract that person's probability of viewing television in the

desired time slot and conducted 3 Bernoulli trials as before. The total number of

successes for the 7 trials is the individual's total exposure. Repeat this procedure for

each individual in the survey. Gifford (personal communication) used simulation

with the MLE (PMzE(z) = z/k) of single issue reach to estimate the audience

for a combined magazine/television schedule in such a way. Table 3 shows the

results of averaging 50 simulated e.d.'s for the National Buineu Review using

the personal probabilities given by the MLE, the BBD empirical Bayes estimator

(Pa(z) = (& + z)/(& + A + k) = .228(z + .012)) and the MBBD empirical Bayes

estimator (given by (5.2)).

All the X2 statistics are significant (p-value < 0.01) whereas the X2 for the

National Busines Review using the MBBD model (from Table 1) is 2.6 (p-value

> 0.1) so that simulation methods are inferior to fitting a model in this example.

Nonetheless, the empirical Bayes estimate of personal probability, based on the

MBBD model, gives the best results of the three P(z)'s used. From this example

we infer it is best to use simulation only when it is impossible to construct an e.d.

model, and that the empirical Bayes estimate, based on the MBBD in (5.1), is likely

to give better results than simulations based on the MLE.
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Table 3: EAd's obtained byr averaging 50 simulated e-d.'s using
PMLEir(z), Pq (x) and Pull(x) as estimates of personal probability.

Exposures x2
0 1 2 3 4

Observed 4961 90 47 12 95

MLE 4991.9 48.4 36.6 21.9 102.3 42.2
BBD 4945.8 101.7 39.4 43.9 70.6 33.4
MBBD 4935.1 132.3 29.1 16.2 88.3 21.9
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